The intention of sustainable design is to "eliminate negative environmental impact completely through skillful, sensitive design". Manifestations of sustainable design require no non-renewable resources, impact the environment minimally, and relate people with the natural environment.
Applications of this philosophy range from the microcosm — small objects for everyday use, through to the macrocosm — buildings, cities, and the Earth's physical surface. It is a philosophy that can be applied in the fields ofarchitecture, landscape architecture, urban design, urban planning, engineering, graphic design, industrial design, interior design, and fashion design.
Sustainable design is mostly a general reaction to global environmental crises, the rapid growth of economic activity and human population, depletion of natural resources, damage to ecosystems, and loss of biodiversity.
The limits of sustainable design are reducing. Whole earth impacts are beginning to be considered because growth in goods and services is consistently outpacing gains in efficiency. As a result, the net effect of sustainable design to date has been to simply improve the efficiency of rapidly increasing impacts. The present approach, which focuses on the efficiency of delivering individual goods and services, does not solve this problem. The basic dilemmas include: the increasing complexity of efficiency improvements; the difficulty of implementing new technologies in societies built around old ones; that physical impacts of delivering goods and services are not localized, but are distributed throughout the economies; and that the scale of resource use is growing and not stabilizing.
While the practical application varies among disciplines, some common principles are as follows:
- Low-impact materials: choose non-toxic, sustainably produced or recycled materials which require little energy to process
- Energy efficiency: use manufacturing processes and produce products which require less energy
- Quality and durability: longer-lasting and better-functioning products will have to be replaced less frequently, reducing the impacts of producing replacements
- Design for reuse and recycling: "Products, processes, and systems should be designed for performance in a commercial 'afterlife'."
- Design Impact Measures for total carbon footprint and life-cycle assessment for any resource used are increasingly required and available. Many are complex, but some give quick and accurate whole-earth estimates of impacts. One measure estimates any spending as consuming an average economic share of global energy use of 8,000btu per dollar and producing CO2 at the average rate of 0.57 kg of CO2 per dollar (1995 dollars US) from DOE figures.
- Sustainable Design Standards and project design guides are also increasingly available and are vigorously being developed by a wide array of private organizations and individuals. There is also a large body of new methods emerging from the rapid development of what has become known as 'sustainability science' promoted by a wide variety of educational and governmental institutions.
- Biomimicry: "redesigning industrial systems on biological lines ... enabling the constant reuse of materials in continuous closed cycles..."
- Service substitution: shifting the mode of consumption from personal ownership of products to provision of services which provide similar functions, e.g., from a private automobile to a carsharing service. Such a system promotes minimal resource use per unit of consumption (e.g., per trip driven).
- Renewability: materials should come from nearby (local or bioregional), sustainably managed renewable sources that can be composted when their usefulness has been exhausted.
- Robust eco-design: robust design principles are applied to the design of a pollution sources).
Wikipedia